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Spiral and Taylor vortex fronts and pulses in axial through flow

A. Pinter, M. Lücke, and Ch. Hoffmann
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150, D-66041 Saarbru¨cken, Germany

~Received 19 July 2002; published 27 February 2003!

The influence of an axial through flow on the spatiotemporal growth behavior of different vortex structures
in the Taylor-Couette system with radius ratioh50.5 is determined. The Navier-Stokes equations~NSE!
linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide
range of through flow strengths Re and different rates of corotating and counterrotating cylinders for toroidally
closed vortices with azimuthal wave numberm50 and for spiral vortex flow withm561. For each of these
three different vortex varieties we have investigated~i! axially extended vortex structures,~ii ! axially localized
vortex pulses, and~iii ! vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes
with the three differentm are evaluated for real axial wave numbers for~i! and over the plane of complex axial
wave numbers for~ii ! and ~iii !. We have also determined the Ginzburg-Landau amplitude equation~GLE!
approximation in order to analyze its predictions for the vortex stuctures~ii ! and ~iii !. Critical bifurcation
thresholds for extended vortex structures are evaluated. The boundaries between absolute and convective
instability of the basic state for vortex pulses are determined with a saddle-point analysis of the dispersion
relations. Fit parameters for power-law expansions of the boundaries up to Re4 are listed in two tables. Finally,
the linearly selected front behavior of growing vortex structures is investigated using saddle-point analyses of
the dispersion relations of NSE and GLE. For the two front intensity profiles~increasing in positive or negative
axial direction! we have determined front velocities, axial growth rates, and the wave numbers and frequencies
of the unfolding vortex patterns with azimuthal wave numbersm50,61, respectively.

DOI: 10.1103/PhysRevE.67.026318 PACS number~s!: 47.20.2k, 47.54.1r, 47.32.2y, 47.10.1g
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I. INTRODUCTION

The Taylor-Couette system@1# of fluid flow in the annulus
between concentric cylinders with the inner and the ou
one rotating with different velocities is one of the simple
examples of a driven nonlinear dissipative system that sh
spontaneous pattern formation out of an unstructured b
state that is stable at small driving@5#. This basic flow state
is stationary and axially and azimuthally homogeneous
shows only a radial variation across the annular gap. It c
sists of a superposition of circular Couette flow~CCF! in
azimuthal direction and of an annular Poiseuille flow~APF!
in axial direction if as in our case an axial through flow
imposed. Axially periodic vortex flow solutions bifurcat
@6,7# out of this homogeneous basic flow when the rotat
rate of the inner cylinder is sufficiently high. These prima
bifurcation thresholds to periodic vortex stuctures have b
the aim of many linear stability analyses of the basic fl
state@8–13#.

For the radius ratioh50.5 and the parameter ranges
rotation rates and through flow investigated here in t
work, three spatiotemporally differing primary vortex stru
tures are relevant: Rotationally symmetric, toroidally clos
vortices with azimuthal wave numberm50 that move in
downstream direction with the APF—for shortness we c
this flow state Taylor vortex flow~TVF! although the pres-
ence of an axial through flow modifies the genuine station
TVF stucture. And, furthermore, spiral vortex flow~SPI!
consisting of either left spiral vortices~L-SPI! with m51 or
right spiral vortices~R-SPI! with m521.

L-SPI and R-SPI are axial mirror images of each other
the absence of axial through flow with the latter breaking
mirror symmetry of the former. While rotating azimuthal
into the same direction as the inner cylinder L-SPI propag
1063-651X/2003/67~2!/026318~15!/$20.00 67 0263
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axially opposite to R-SPI. This spiral dynamics is large
induced by the advective properties of the basic flow sta
Furthermore, without through flow the symmetry degener
bifurcation threshold for these two symmetry degenerate
solutions is simultaneously also the bifurcation threshold
a vortex flow solution called ribbons@6#. This solution con-
sists right at threshold of a linear superposition of L-SPI a
R-SPI with equal amplitude and it becomes further aw
from threshold a genuine nonlinear vortex flow solutio
However, here we are dealing only with linear vortex flo
fields that may be superimposed with arbitrary amplitudes
well as wave numbers and that are evolving separately f
each other according to the linear field equations. Thus
do not need to discuss ribbons separately from our gen
investigation of linear vortex modes with general axial a
azimuthal wave numbers.

In this work we quantitatively determine the influence
an axial through flow on the spatiotemporal growth prop
ties of linear perturbations of the basic flow state with a
muthal wave numbersm50 andm561, i.e., of toroidally
closed vortices and of spiral vortices, repectively. In ea
case we investigate~i! axially extended structures,~ii ! pulses
of axially localized wave packets of vortices, and~iii ! vortex
fronts.

In Sec. II we describe the system, we briefly review t
linearized Navier-Stokes equations~NSE! for the eigenvalue
problem describing vortex perturbations, and we give det
of our numerical procedure to solve the eigenvalue proble
In Sec. III we discuss the spatiotemporal structure, symm
properties, and bifurcation thresholds for onset of axially e
tended vortex perturbations of the formei (kz1mw) with real
axial wave numberk and different azimuthal wave numbe
m in the absence and presence of an axial through flow
Sec. IV we consider axially localized wave packets cons
©2003 The American Physical Society18-1
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ing of superpositions of vortex eigenmodes of the line
NSE. Here we determine among others the boundary
tween convective and absolute instability of the basic fl
against growth of vortices with a particularm by a saddle-
point analysis of the linear complex dispersion relation of
NSE over the plane of complex axial wave numbers. In
dition we also determine the Ginzburg-Landau amplitu
equation~GLE! approximation for the dispersion relation fo
the sake of comparison. In Sec. V we evaluate the spatiot
poral properties of linearly selected vortex fronts using
saddle-point analysis of the dispersion relation. Also here
compare with GLE results. The final section contains a su
mary.

II. SYSTEM

Here we describe the system and we provide definiti
and equations. Then we briefly review the linearized eq
tions for the eigenvalue problem describing vortex pertur
tions of the basic flow state. Finally we give details of o
numerical procedure to solve the eigenvalue problem.

A. Setup

We consider the flow of an incompressible fluid in t
annulus between two concentric cylinders of inner radiusr 1
and outer radiusr 2 with a gap widthd5r 22r 1. The bound-
ary conditions atr 1 andr 2 are no slip. The angular velocitie
of the inner and outer cylinders areV1 andV2, respectively.
The associated Reynolds numbers are

R15
d

n
r 1V1 , R25

d

n
r 2V2 , ~2.1!

where n is the kinematic viscosity. An externally impose
axial through flow is measured by the axial Reynolds num

Re5
d

n
^w&, ~2.2!

where the mean axial velocitŷw& averaged over the annula
cross section describes the total through flow. We use
the relative control parameters,

m5
R1

R1c~Re!
21, e5

R1

R1c~Re50!
21 ~2.3!

measuring the relative distance of the inner Reynolds n
ber R1 from the critical onsetR1c of axially extended spira
vortices or Taylor vortices in the presence and in the abse
(Re50) of through flow, respectively@14#. In this notation

mc50 and ec~Re!5
R1c~Re!

R1c~Re50!
21 ~2.4!

is the critical threshold for onset of the vortex flow in que
tion. The relation betweenm ande is

m5
e2ec~Re!

11ec~Re!
. ~2.5!
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With infinitely long cylinders the only relevant paramet
characterizing the geometry is the radius ratioh5r 1 /r 2.

The velocity field u of the fluid is described by the
Navier-Stokes equations~NSE! for incompressible fluid flow

] tu5“

2u2R1~u•“ !u2“p, “•u50. ~2.6!

Here and in the following we scale positions by the g
width d, the velocityu by the velocity r 1V1 of the inner
cylinder, timet by the momentum diffusion timed2/n across
the gap, and the pressurep by rr 1V1n/d with r denoting the
constant mass density of the fluid. Furthermore, we dec
pose the velocity field

u5uer1vew1wez ~2.7!

into radial (u), azimuthal (v), and axial ~w! components
using cylindrical coordinatesr ,w,z.

B. Basic flow state

The basic flow stateu0 that is realized in the absolutel
stable regime of inner Reynolds numbersR1 below the
thresholds for onset of Taylor and spiral vortex flow is ro
tionally symmetric, axially homogeneous, and constant
time. It consists of a linear superposition of CCF in a
muthal directionew , and of APF in axial directionez :

u05vCCF~r !ew1wAPF~r !ez ~2.8!

without any radial component. Here

vCCF~r !5Ar1B/r ~2.9!

and

wAPF~r !5Re
r 21C ln~r !1D

E
~2.10!

with

A52
h22V2 /V1

h~11h!
, ~2.11!

B5
h~12V2 /V1!

~12h!~12h2!
, ~2.12!

C5
11h

~12h!ln~h!
, ~2.13!

D5
~11h!ln~12h!

~12h!ln~h!
2

1

~12h!2
, ~2.14!

E52
1

2
R1

12h21~11h2!ln~h!

~12h!2ln~h!
. ~2.15!
8-2



E
p

l

nt

ter-

for
lex

6

SPIRAL AND TAYLOR VORTEX FRONTS AND PULSES . . . PHYSICAL REVIEW E 67, 026318 ~2003!
C. Linear eigenvalue problem of vortex perturbations

Let c5(u,v,w,p) abbreviate the deviation fields from
basic flow state~2.8!. Then the general solution of the NS
linearized in the deviation fields can be written as a super
sition of modes of the form

c~r ,w,z,t !5f~r !ei (kz1mw)est ~2.16!

with axial wave numberk52p/l and integer azimutha
wave numberm. The complex amplitude functions

f~r !5@U~r !,V~r !,W~r !,P~r !# ~2.17!

depend on the mode indicesk,m and the radial coordinater.
The characteristic exponents(k,m) is in general complex. It
is decomposed here as follows:

s5Res1 i Ims5g2 iv ~2.18!

into the growth rateg and the characteristic frequencyv of
the k2m mode. Substituting the above solution ansatz i
the linearized NSE yields

sU5S ] r
21

1

r
] r2

11m2

r 2
2k2D U12FV

2] r P2 imS 2

r 2
V1FU D 2 ikHU, ~2.19!

sV5S ] r
21

1

r
] r2

11m2

r 2
2k2D V12GU2

im

r
P

1 imS 2

r 2
U2FVD 2 ikHV, ~2.20!

sW5S ] r
21

1

r
] r2

m2

r 2
2k2D W2 ikP2 imFW2IU 2 ikHW,

~2.21!
o-

o

05] rU1
1

r
U1

im

r
V1 ikW. ~2.22!

The solution of this eigenvalue problem yields the charac
istic exponents and the associated eigenfunctionsf(r ) as
functions ofk,m. Here

F~r !5
R1

r
vCCF~r !, G52R1A, ~2.23!

H~r !5R1wAPF~r !, I ~r !5] rH~r ! ~2.24!

are quantities defining basic flow state~2.8!. The latter enters
via the linearized advective term of the NSE.

In order to rewrite Eqs.~2.19!–~2.22! into a system of
first-order differential equations—which is advantageous
numerical reasons—we introduce three additional comp
amplitude functions@11#

X5] rU1
1

r
U2P, ~2.25!

Y5] rV1
1

r
V, ~2.26!

Z5] rW. ~2.27!

Using Eq.~2.25! and the continuity Eq.~2.22! one can then
eliminate the pressure in Eq.~2.20! by P52X2 ikW
2( im/r )V. All in all one obtains in this way a system of
coupled, first-order differential equations

] rX5LX ~2.28!

for the six variables

X5~U,V,W,X,Y,Z!T ~2.29!

with
L5

¨

2
1

r
2 i

m

r
2 ik 0 0 0

0 2
1

r
0 0 1 0

0 0 0 0 0 1

L 2S i
m

r 2
2F D 0 0 0 0

22S i
m

r 2
1GD L1

m2

r 2

mk

r
2 i

m

r
0 0

I
mk

r
L1k2 2 ik 0 2

1

r

©
, ~2.30!
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where

L5s1
m2

r 2
1k21 imF1 ikH. ~2.31!

D. Numerical procedures

We have solved eigenvalue equations~2.28! numerically
with a standard shooting method subject to the six bound
conditions,

U5V5W50 at r 15h/~12h! and r 251/~12h!,
~2.32!

which make the eigenvalue spectrum discrete. To integ
from r 1 to r 2 we used a fourth-order Runge-Kutta formu
@15# with two step widths (Dr 51/200 and 1/400, respec
tively! for a Richardson extrapolation. A Newton-Raphs
method@16# was then used to find the roots of the compl
determinant of the 333 matrix, which ensures the vanishin
of U,V,W at the outer cylinder. We therefore, vary in th
Newton-Raphson procedure only two of the parameterss,
h, R1 , R2, Re, m, k) @8# that enter into Eq.~2.28! while
keeping the others fixed. In this way we determine on o
hand, the marginal threshold values ofR1 andv with g50
for which the basic state is marginally stable against
growth of an extended perturbation with givenm and real
axial wave numberk at specified parametersh, R2, Re. On
the other hand, we calculate for givenm, h, R1 , R2, Re the
complex eigenvalues over the complex wave number
plane—including as special case also the realk axis. In each
case, we are interested only in the vortex modes with
largest growth rates for which the associated amplitude fu
tions f(r ) display the least radial variation with the fewe
number of nodes.

We present here results for the radius ratioh50.5 in a
range of outer Reynolds numbers2150<R2<50. In this
parameter regime the vortex perturbations with the larg
growth rates have in the absence of through flow azimu
wave numbers of eitherm50 or m561 @11#. We investi-
gate here linear properties of such vortices withm50 and
m561 in a through flow of Reynolds numbers220<Re
<20.

III. AXIALLY EXTENDED VORTEX STRUCTURES

Here we discuss the spatiotemporal structure, symm
properties, and bifurcation thresholds for onset of axially
tended vortex perturbations with real axial wave numbek
and different azimuthal wave numbersm in the absence and
presence of an axial through flow.

A. Spatiotemporal structure

Structure and dynamics of vortex modes~2.16! are domi-
nated by the fact that their phases are constant on any c
drical surface,r 5const, along lines given by the equation

z052
m

k
w1

v~k,m!

k
t. ~3.1!
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Here the constant phase coming from the amplitudef(r ) is
suppressed. Thus, on thew2z plane of such an ‘‘unrolled’’
cylindrical surface these lines of constant phase are stra

1. Taylor vortexlike patterns—mÄ0

For rotationally symmetric Taylor vortexlike perturbation
the line pattern of constant phases is parallel toew . The m
50 pattern is stationary for Re50. Only for finite through
flow it propagates axially with phase velocity

wphase5
v

k
~3.2!

that is proportional to Re. The main reason for this is that
azimuthal flow of the basic CCF state is precisely paralle
the vortex lines of constant phase, while the APF flow be
perpendicular to them can advect them. The latter happen
our axially periodic system that does not exert any ph
pinning at the axial boundaries as soon as Re.0.

2. Spiral patterns—mÅ0

Vortex modes~2.16! with axial wave numbermÞ0 have
spiral structure. Whenm/k is positive~negative! the lines of
constant phasez0(w,t) ~3.1! wind in a L-SPI~R-SPI! around
the cylindrical surfacer 5const with negative~positive!
slope]wz052m/k. The lines of constant phase and with
the whole spiral stucture rotates inw rigidly with angular
velocity

ẇSPI5
v

m
. ~3.3!

In the absence of an externally imposed through flow,
50, this rotation proceeds for L-SPI and R-SPI alike into t
same direction as the rotation of the inner cylinder. The r
son is that the spiral perturbations are advected by the in
part of the azimuthal CCF, which is relevant for the centrif
gal instability leading to vortex generation. A model explai
ing this effect is presented in Ref.@17#.

There are two immediate consequences of this advec
origin of the spiral dynamics induced by the inner cylinde
rotation: ~i! With the latter being by definition positive—in
this work the inner cylinder is taken to rotate in positiv
w-direction—alsov(k,m)/m is positive for Re50. Hence,
say, anm51 (m521) spiral has positive~negative! fre-
quency for Re50. ~ii ! Then a L-SPI~R-SPI! being defined
by m/k.0 (m/k,0) propagates for Re50 upwards~down-
wards! with positive ~negative! axial phase velocity

wphase5
v

k
5

m

k
ẇSPI ~3.4!

that is directly related to itspositiveangular velocityẇSPI .
An externally applied axial through flow changes the ax

phase velocities and frequencies of them50 andmÞ0 vor-
tex modes roughly proportional to Re, i.e.,

wphase~k,m,Re!2wphase~k,m,Re50!}Re. ~3.5!
8-4
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Simultaneously the rotation rates,ẇSPI5wphasek/m, of the
spirals are changed accordingly. Thus, in each case the
tex frequencies are largely determined by the basic sta
advective properties, i.e., by the combination of azimut
advection byvCCF and axial advection bywAPF .

B. Symmetries

Here we consider symmetry properties of axially e
tended vortex perturbations of the form Eq.~2.16! with real
wave numberk. Symmetry relations between different vorte
fronts with complex wave numberQ are discussed later on i
Sec. V B 2.

Table I shows the symmetry transformations that leave
eigenvalue problem unchanged. They reflect~i! thatL trans-
forms under complex conjugation~indicated by an overline!
as

L~k,m,s!5L~2k,2m,s̄ ! ~3.6!

and ~ii ! that the NSE Eq.~2.6! are invariant under an axia
reflection (z,Re,w)→(2z,2Re,2w).

Thus one infers, for example, that the growth rate~fre-
quency! of the characteristic exponents5g2 iv for m50
vortices is an even~odd! function ofk and Re. For perturba
tions with mÞ0 one finds that

g~k,m,Re!5g~2k,2m,Re!5g~2k,m,2Re!

5g~k,2m,2Re!, ~3.7!

v~k,m,Re!52v~2k,2m,Re!5v~2k,m,2Re!

52v~k,2m,2Re!, ~3.8!

and that the spatiotemporal structure including the amplit
functions of aL-spiral perturbation (k/m.0) at Re.0 is the
same as that of aR-spiral pertubation (k/m,0) at Re,0.

TABLE I. Transformation behavior of the eigenvalues a
eigenfunctions of the eigenvalue problem Eqs.~2.28!–~2.31! under
symmetry operations. HereA denotes the identity,B complex con-
jugation,C axial reflection, andD complex conjugation~indicated
by an overbar! combined with axial reflection.

Operation
A B C D

k→ k 2k 2k k
m→ m 2m m 2m
Re→ Re Re 2Re 2Re
s→ s s̄ s s̄
U→ U Ū U Ū
V→ V V̄ V V̄
W→ W W̄ 2W 2W̄
X→ X X̄ X X̄
Y→ Y Ȳ Y Ȳ
Z→ Z Z̄ 2Z 2Z̄
02631
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Note, however, that any finite through flow breaks the ax
mirror symmetry betweenL andR spirals at Re50 so that,
among others,

gR~2Re!5gL~Re!ÞgR~Re!5gL~2Re! ~3.9!

when ReÞ0. But the symmetry relations are such that
suffices to investigate, say, positivek combined together with
either~i! m.0 only for positiveandnegative Re or, equiva
lently, ~ii ! m positiveandnegative for Re.0 only in order to
get the complete linear information on both spiral vort
types.

C. Bifurcation thresholds

Figure 1 shows thecritical bifurcation thresholdsR1c(R2)
for m50 and m561 vortex patterns with the respectiv
critical wave numbers,kc(R2), as functions ofR2 in the
absence of through flow.

The vertical lines in Fig. 1 mark the two outer Reynol
numbersR250 andR252125 for which we show in Fig. 2
as representative examples how the critical thresholds ev
with through flow Reynolds number Re. The above d
cussed symmetry relationgR(2Re)5gL(Re) between the
growth rates ofR and L spirals implies the correspondin
relation between the respective bifurcation thresholds~full
and dashed lines in Fig. 2!. In the remainder of this paper w
therefore restrict ourselves without loss of information
positive Re.

FIG. 1. Critical bifurcation thresholdsR1c(R2) for m50 and
m561 vortex patterns with the respective critical wave numbe
kc(m,R2), as functions ofR2 in the absence of axial through flow
The vertical lines mark the two representative outer Reynolds n
bersR250 andR252125 that are investigated in more detail
this work. The radius ratio ish50.5.
8-5
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For small Re.0 the axial flow stabilizes the basic sta
against growth of TVF (m50) and R-SPI (m521) pertur-
bations. On the other hand, the bifurcation threshold
L-SPI (m51) vortex patterns that propagate into the sa
direction as the through flow decreases at small Re and
creases only at larger Re. The upwards shift of them50
threshold with increasing Re is stronger than that form
51. Thus, eventually the latter comes to lie below t
former and consequently the growth ofL spirals propagating
into the same direction as the through flow is favored
sufficiently large Re even whenR250.

Dotted lines in Fig. 3 show the reduced critical thresho
curvesec(Re) ~2.4! as functions of Re for the two represe
tative outer Reynolds numbersR250 andR252125. The
other lines in Fig. 3 are discussed in Sec. IV. Our numer
results forec(Re) that were obtained in steps ofd Re51
were fitted in the range Re5220•••20 to the following ex-
pression:

f 5a1Re1a2Re21a3Re31a4Re4. ~3.10!

The fit parametersan are listed for differentR2 in Tables II
and III for TVF (m50) and L-SPI (m51), respectively.
The threshold curves for R-SPI (m521) are obtained ac
cording to Sec. III B from those for L-SPI by Re→2Re, i.e.,
by changing the sign of the odd coefficients in Table III.

IV. LOCALIZED VORTEX PERTURBATIONS

So far we have considered axially extended vortex per
bations of the formc(r ,w,z)5f(r )ei (kz1mw), which are
single eigenmodes of the operatorL ~2.30!. For supercritical

FIG. 2. Evolution of the critical bifurcation thresholdsR1c(Re)
for m50 andm561 vortex patterns with through flow Reynold
number Re. The two outer Reynolds numbersR250 and R25
2125 are marked in Fig. 1. The radius ratio ish50.5.
02631
r
e
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r
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control parameters,R1.R1c(m), a finite band of axial wave
numbers can grow and with it also axially localized wa
packets consisting of superpositions of vortex modes.

A. Vortex packets

Let us consider first an infinitesimal initial perturbatio
with azimuthal wave numberm that is axially localized, i.e.,
a wave packet that consists of a superposition of vor
modes of differentk but commonm—an initial perturbation
containing differentm modes would be just a sum of th
above described vortex packets that would evolve indep
dently of each other as long as the linear description is va

After fast transients have decayed a pulselike perturba
survives with axial wave numbers within the unstable ba
centered around the wave number of maximal grow
kmax(m).kc(m). Since the above described wave pack

FIG. 3. Stability boundaries of the basic flow state as functio
of the through flow Reynolds number Re. Dotted lines show
reduced critical bifurcation thresholdsec ~2.4! for axially extended
vortex patterns. The full~dashed! boundary lines,ec2a , between
the convectively and absolutely unstable parameter regions for
tex growth were obtained from the eigenvalues of the full NSE~the
GLE approximation!—cf. Sec. IV. The radius ratio ish50.5.
8-6
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TABLE II. Fit parameters for the Re dependence of the stability boundaries of the basic state a
growth of TVF (m50) perturbations for differentR2, reduced critical bifurcation thresholdec of axially
extended vortex patterns and boundaryec2a between the convectively and absolutely unstable param
regime. Hereec2a

GLE is obtained from the GLE approximation~cf. Sec. IV C 1!.

R2 2150 2125 2100 275 250 225 0 25 50

ec5a2Re21a4Re4

a23104 0.590 0.795 1.089 1.502 2.083 3.115 3.679 2.447 1.30
a43109 5.181 3.966 1.151 22.804 23.385 215.62 234.97 214.55 20.958

ec2a5a2Re21a4Re4

a23103 1.181 1.451 1.854 2.516 3.906 5.588 6.238 4.338 2.48
a43106 0.116 0.139 0.182 0.293 22.583 24.642 25.716 23.682 21.740

ec2a
GLE5a2Re21a4Re4

a23103 1.161 1.416 1.800 2.517 4.068 6.547 7.732 5.152 2.76
a43106 20.164 20.268 20.481 21.011 22.106 23.807 24.900 23.022 21.425
a
fo

on
a

,

ent

the
contains vortex modes that can grow the pulse will grow
well. Simultaneously the pulse center travels axially
small e with the critical goup velocity

vg5
]v~k!

]k U
kc

. ~4.1!

Hence when at a bifurcation threshold the frequency is n
zero with a finite group velocity then the supercritical sp
02631
s
r

-
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tiotemporal growth behavior of an axiallylocalized vortex
perturbation differs significantly from an axiallyextended
vortex mode. The growth of the latter is axially uniform
which is not the case for the former.

Furthermore, one has to distinguish between two differ
supercritical regimes for the former:~i! In the so-called con-
vectively unstable parameter regime of the basic state
vortex packet moves away with the velocityvg faster than it
grows—while growing in the frame comoving withvg the
gainst

eter

1

3

2

3

TABLE III. Fit parameters for the Re dependence of the stability boundaries of the basic state a
growth of L-SPI (m51) perturbations for differentR2, reduced critical bifurcation thresholdec of axially
extended vortex patterns and boundaryec2a between the convectively and absolutely unstable param
regime. Hereec2a

GLE is obtained from the GLE approximation~cf. Sec. IV C 1!. The results for R-SPI (m5
21) perturbations are obtained according to Sec. III B from those for L-SPI (m51) by Re→2Re, i.e., by
changing the sign of the odd coefficients in the table.

R2 2150 2125 2100 275 250 225 0 25 50

ec5a1Re1a2Re21a3Re31a4Re4

a13103 21.582 22.365 23.513 24.887 26.143 25.833 23.372 21.402 20.514
a23104 0.957 1.199 1.496 1.925 2.520 3.174 3.197 1.806 0.58
a33107 29.181 29.001 28.485 27.678 26.741 24.172 23.832 23.572 23.685
a43109 1.018 20.378 20.180 20.563 23.673 221.77 236.15 25.707 19.92

ec2a5a01a1Re1a2Re21a3Re31a4Re4

a03103 2.358 5.497 3.775 21.237 4.095 12.25 18.96 10.09 2.610
a13103 23.268 23.578 23.048 20.449 0.926 1.159 1.012 1.217 1.455
a23103 1.532 1.964 2.618 3.539 4.351 5.535 6.036 4.357 2.60
a33106 8.408 11.87 14.97 9.992 6.487 4.919 3.680 1.36720.143
a43106 20.169 20.368 20.815 21.977 22.809 24.068 24.827 23.203 21.549

ec2a
GLE5a01a1Re1a2Re21a3Re31a4Re4

a03103 1.101 22.541 1.405 2.529 3.458 3.998 3.641 1.320 0.06
a13103 24.117 0.755 21.044 20.318 0.831 2.063 1.495 1.377 1.625
a23103 2.030 2.792 2.820 3.435 4.437 6.166 7.265 4.981 2.72
a33106 28.845 230.34 27.121 4.780 10.58 8.229 28.191 212.58 210.03
a43106 20.822 22.713 21.136 21.004 21.674 22.923 23.799 22.234 20.854
8-7
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pulse moves out of the system so that the basic state is
stored@18,19#. In other words, the two fronts that join th
pulse intensity envelope to the structureless state propa
both in the direction in which the packet center moves.~ii ! In
the so called absolutely unstable parameter regime
growth rate of the packet is so large that one front propag
in the laboratory frame opposite to the center motion. Th
the packet expands not only into the direction of the pu
motion but also opposite to it@18# so that eventually the
initial perturbation can fill the entire system. But the line
growth analysis of the vortex fields does not determine
what nonlinear final stable state the system will end nor w
possible intermediate nonlinear transient behavior mi
occur.

However, this analysis has an important implication
experiments with through flow: Developed vortex structu
can be seen in finite systems with vortex suppressing i
conditions only in the absolutely unstable regime, which
typically realized at largerR1.R1c ~cf. Fig. 3! if one leaves
aside noise-sustained patterns@20,21# in the convectively un-
stable regime. In this latter regime, the vortex front that c
nects to the zero amplitude inlet condition moves dow
stream~we assume that the fronts of our forwards bifurcati
vortex structures are linearly selected thus excluding
buildup of nonlinear fronts that might revert their propag
tion direction!. In the absolutely unstable regime, on t
other hand, an upstream motion of this front is stopped
the inlet condition at a characteristic downstream grow
length from the inlet. This growth length of the downstrea
evolving vortex structure diverges@22,23# when approaching
the boundary between convective and absolute instab
from the latter regime.

It is remarkable that based on the experimental obse
tions of Takeuchi and Jankowski@9# such a behavior was
discussed already in 1979@cf. Figs. 4 and 5~a! in Ref. @9# and
their discussion in Sec. VI of Ref.@9##, albeit without invok-
ing the concept of absolute and convective instability@18#
which was introduced to a broader fluid dynamics comm
nity only a few years later@19#.

B. Boundary between convective and absolute instabilities:
Saddle-point analysis

The boundary between convective and absolute insta
ties of the basic flow against growth of vortices with a p
ticular azimuthal wave numberm is marked by those param
eter combinations for which one of the fronts of the line
packet ofm vortices reverts its propagation direction in th
laboratory frame: In the convectively unstable parameter
gime this front propagates in the same direction as the ce
of the packet, in the absolutely unstable regime it mo
opposite to it, and right on the boundary between the t
regimes the front is stationary in the laboratory frame.

This parameter combination can be determined by
saddle-point analysis of the linear complex dispersion re
tion s(Q) over the plane of complex wave numbers@5,19#

Q5ReQ1 i Im Q5k2 iK . ~4.2!

Here we do not display the dependence of
02631
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s~Q!5Res~Q!1 i Im s~Q!5g~Q!2 iv~Q! ~4.3!

on the parametersR1 , R2, Re,h and we also do not indicate
that the dispersion relations for vortex perturbations with d
ferent azimuthal wave numbersm are different. The bound-
ary condition of no growth for a front that is stationary in th
laboratory system is

Res50 ~4.4!

at the appropriate saddle positionQ* of s(Q) in the com-
plex wave number plane@19#. HereQ* follows from

ds~Q!

dQ U
Q*

50. ~4.5!

For fixed m, R2, Re, h Eqs. ~4.4! and ~4.5! yield R1c2a .
Here and in the following the subscriptc2a identifies
boundaries between convective and absolute instab
Thus, e.g., the basic flow state is convectively@absolutely#
unstable against vortex perturbations with azimuthal wa
number m for R1c(m),R1,R1c2a(m) @R1.R1c2a(m)#
and absolutely stable whenR1,R1c(m).

We are interested here in the Re dependence of th
thresholds and we will discuss to that end the redu
boundary quantities

mc2a~Re!5
R1c2a~Re!

R1c~Re!
21 ~4.6!

and

ex~Re!5
R1x~Re!

R1c~Re50!
21, where x5c or x5c2a.

~4.7!

Because of the symmetries ofs(Q), of its saddle-pointQ* ,
and of the resulting boundaryR1c2a(m,Re) one has

k* ~2m,2Re!5k* ~m,Re!, ~4.8!

K* ~2m,2Re!52K* ~m,Re!, ~4.9!

mc2a~2m,2Re!5mc2a~m,Re!, ~4.10!

ec2a~2m,2Re!5ec2a~m,Re!, ~4.11!

so that it suffices again to investigate only positive throu
flow.

C. Numerical procedures

In order to determine the boundary between convec
and absolute instabilities via the solution of Eqs.~4.4! and
~4.5! one has to evaluate the dispersion relations(Q) for
complexQ @21,24#. To that end we solved eigenvalue pro
8-8
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lem ~2.28! of the full field equations forcomplex Q~cf. Sec.
IV C 2!. In addition and for comparison we used fors(Q)
the Ginzburg-Landau amplitude equation approximation t
only requires knowledge ofs(k) along the realk axis.

1. Ginzburg-Landau amplitude equation approximation

Within this approximation the dispersion relations(Q)
for vortex modes is expanded inQ andR1 around the critical
point kc , R1c

s~Q,R1!5sc1S ]s

]QD
c

~Q2kc!1
1

2 S ]2s

]Q2D
c

~Q2kc!
2

1S ]s

]R1
D

c

~R12R1c!1h.o.t. ~4.12!

52 ivc2 ivg~Q2kc!2
j0

2

t0
~11 ic1!~Q2kc!

2

1
~11 ic0!

t0
m1h.o.t. ~4.13!

The expansion coefficients in the above expressions ap
also in the linear parts of the Ginzburg-Landau amplitu
equation@5#. They are obtained from the numerical solutio
of the eigenvalue problem, Eq.~2.28!, of the full field equa-
tions for realk close to the critical point@25,26#.

Within the GLE approximation one gets from Eqs.~4.4!
and ~4.5!

~4.14!

mc2a5
vg

2t0
2

4~11c1
2!j0

2
, ~4.15!

and

ec2a~Re!5ec~Re!1
vg

2t0
2

4~11c1
2!j0

2 @11ec~Re!#.

~4.16!

Note that the GLE coefficientsvg , t0 , j0 , c0 , c1 depend on
m, R2, Re,h. For m50 andR250 also the nonlinear coef
ficients of the GLE have been obtained for severalh as
functions of Re@25#.

2. Dispersion relations„Q… of the NSE for complex Q

To assess the quality of the GLE results for the bound
between convective and absolute instability we determi
the dispersion relation of the NSE not only for realk close to
the critical point but for complex axial wave numbersQ that
lie in the vicinity of the relevant saddle locationsQ* of
02631
t

ar
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s(Q). Having determineds(Q) as described in Sec. II D we
solved Eqs.~4.4! and ~4.5! for R1c2a in the form

g~Q* !50,
]g~Q!

]K U
Q*

50,
]g~Q!

]k U
Q*

50 ~4.17!

that follows from using the Cauchy-Riemann relations
s(Q).

D. Results

In Fig. 4 we show the Re variation of the real and ima
nary parts of the relevant saddle-pointQ* 5k* 2 iK * at the
boundaryR1c2a for two characteristic cases:~a! L-SPI (m
51) at R250 and ~b! R-SPI (m521) at R252125. In
each case full~dashed! lines were obtained from the correc
NSE ~approximate GLE! dispersion relations(Q).

Case~a! is representative for a situation where the GL
approximation reasonably well reproduces the corr
result—at least for small Re—and starts to deviate sign
cantly only for larger Re. On the other hand, in case~b! the
GLE approximation tok* displays a smooth variation with
Re that reflects the smooth variation of the saddleQGLE*
~4.14! of sGLE(Q) ~4.13! while the real partk* of the saddle
location of the correct dispersion relation undergoes a d
matic change around Re.0.8. The reason is that the surfac

FIG. 4. Evolution of the coordinatesk* and K* of the saddle
point that determines the boundary,R1c2a , between convective and
absolute instability with through flow Reynolds number Re. F
~dotted! lines are evaluated with the correct NSE~approximate
GLE! dispersion relation. Filled circles in~b! at Re55 mark the
coordinates of the saddle in Fig. 5. The radius ratio ish50.5.
8-9
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of g(Q)5Res(Q) over theQ plane for the two largest ei
genvalues intersect and change their order along theg axis.
Thus, the saddle that is relevant for thec-a transition and

FIG. 5. Real partsg(Q) of the two biggest eigenvalues of th
NSE over the complexQ plane form521, R252125, Re55,
m5mc2a , h50.5. The filled circle marks the saddle atg(Q* )
50 that determines the boundary beteen convective and abs
instability.

FIG. 6. Full lines are sections through the surfaces ofg(Q)
~Fig. 5! for the two biggest eigenvalues of the NSE at const
values ofk in the vicinity of the intersection of the surfaces. Dash
lines showg(K) obtained from the GLE approximation to the di
persion relation. Parameters arem521, R252125, Re55, m
5mc2a , h50.5.
02631
that has the largestg value switches from one eigenvalu
surface to another. Similarly, the eigenvalue surface mi
have another saddle and their ordering ing changes. In con-
trast to that the GLE approximation produces only a sin
eigenvalue tracing out the smooth surfacesGLE(Q) ~4.13!.

To give an impression of such an intersection of the c
rect dispersion surfaces we show in Fig. 5 their real pa
over the complexQ plane at Re55,m5mc2a . Full lines in
Fig. 6 show different constant-k sections through them in th
intersection range. At Re55,m5mc2a the saddle has move
already away from the intersection region. The saddle co
dinates (Q* .4.732 i1.76, g* 50) are indicated in Figs. 4
and 5 by full dots.

While the saddle locationsQGLE* of the GLE approxima-
tion sGLE(Q) ~4.13! can differ substantially from the saddl
Q* of the correct dispersion relation the difference in t
boundaries between convective and absolute instability
typically much less pronounced—cf., e.g., the dashed
full curves forec2a in Fig. 3. There the GLE results~dashed
lines! agree in each case quite well with the correct bou
aries ~full lines! up to, say Re55. However, as a conse
quence of the typical increase of the reduced boundarymc2a
with increasing Re the quality of the GLE results formc2a
generally deteriorates. After all the GLE is strictly valid on
for m→0. Figure 7 shows an example (m51, R252125),
where the GLE prediction for the boundary shows even
qualitative different variation with Re for, say, Re.15. We

ute

t

FIG. 7. Stability boundaries of the basic flow state as functio
of the through flow Reynolds number Re form51, R252125.
The full ~dashed! boundary lines,ec2a , between the convectively
and absolutely unstable parameter regions for vortex growth w
obtained from the eigenvalues of the full NSE~the GLE
approximation!—cf. Sec. IV. Dotted lines show the reduced critic
bifurcation thresholdsec ~2.4! for axially extended vortex patterns
The radius ratio ish50.5.
8-10
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have observed similar behavior—partly at larger Re—a
for other combinations ofm, R2.

Tables II and III contain the coefficients for fitting ou
results forec2a(m50,R2 ,Re) andec2a(m51,R2 ,Re) in the
same way as described in Sec. III C. Also here the bound
curves for R-SPI (m521) are obtained according to Se
III B from those for L-SPI (m51) by Re→2Re, i.e., by
changing the sign of the odd coefficients in Table III.

V. FRONTS AND PULSES

The vortex fronts that we are investigating here and t
appear also as constituents of vortex pulses are perturba
of the basic state, where the fields~locally! have the form

c;ei (k* z2v* t)eK* (z2v* t)eimw ~5.1!

in the laboratory frame. This form describes long-time s
tiotemporal properties of uniquely selected linear fronts@5#.
Axial front velocity v* , axial growth rateK* of the front
envelope, wave numberk* of the vortex pattern under th
front, and its frequencyv* are determined by the sadd
behavior of the linear complex dispersion relations(Q,m)
5g(Q,m)2 iv(Q,m) of the field equations over the plan
of complex axial wave numbersQ5k2 iK . Since superpo-
sitions of vortex perturbations with differentm evolve inde-
pendently from each other within the linear description
mentioned already in Sec. IV A. We consider here o
fronts of vortex perturbations that have a common azimu
wave numberm and we do not always display the latt
explicitly.

The saddle condition is@5#

d

dQ
@s~Q!1 i v Q#uQ5Q* 50. ~5.2!

And the stationarity requirement that the temporal grow
rate of the front vanishes in the frame comoving with t
front velocity v* demands that

05Re@s~Q!1 ivQ#uQ5Q* 5g~Q* !1v* K* . ~5.3!

We combine Eqs.~5.2! and ~5.3! into the three equations

v* 52
g~Q* !

K*
52

]g~Q!

]K U
Q*

,
]g~Q!

]k U
Q*

50 ~5.4!

that we have solved forv* ,k* ,K* .

A. Notation

The front envelope of Eq.~5.1! varies axially witheK* z.
If K* .0, then the perturbation grows atz52` out of the
basic state. We call such a front to be of type1 and identify
the associated front properties by a subscript1. On the other
hand, forK* ,0 we have a front of type2 with an intensity
envelope that joins atz5` with the basic state. So the tw
subscripts6 identify the axial variations of the front enve
lopes. A pulselike perturbation of the basic state would c
sist suffiently away from its center of a1 front for z→
02631
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2` and of a2 front for z→`. Correspondingly the Eqs
~5.4! have two different solutions: one of them describes
2 front and the other one a1 front. A schematic plot of the
different envelope types can be seen in Fig. 8.

We identify the vortex pattern that is unfolded under
front either by its azimuthal wave numberm or by the super-
scriptsT, L, R. HereT refers to a TVF-like pattern of vortice
with m50, L denotesL-spiral vortices withm51, andR
identifiesR-spiral vortices withm521. Hencem or equiva-
lently the superscripts identify the spatiotemporal struct
of the vortex pattern growing under the front. In this wor
we restrict ourselves to these three vortex varieties. Si
they appear under the above described two front envelo
there are six different fronts that we have investigated he

B. Results

In Fig. 9 the results of our investigations are shown
fronts with azimuthal wave numbersm50, 1, and21 for
axial through flow Reynolds numbers Re50, 10, and 20. In
each case the outer cylinder is at rest,R250. The front prop-
erties are presented as functions ofm. Within each 232
block of figures~a!–~i! the left column shows real partk*
and negative imaginary partK* of the saddle point and the
right column shows the front velocityv* and the frequency
v* , respectively. They all start atm50 since vortex growth
is possible only above the critical threshold, i.e., forR1
.R1c(Re). The twocritical fronts at this threshold are de
generate (k2* 5k1* 5kc , v2* 5v1* 5vc , v2* 5v1* 5vg) with
vanishing axial growth ratesK2* 5K1* 50. For m.0, how-
ever,1 and 2 fronts differ from each other thus reflectin
differences in the respective saddle points.

The variation ofk* , K* , v* , andv* with m and Re is
best understood by comparison with the corresponding G

FIG. 8. Schematic plot of different vortex fronts. Thick full line
in ~a! and thin full lines in~b! show intensity envelopes of1 type
and of2 type fronts connecting to the basic state atz→2` and at
z→`, respectively. This line convention—thick ones for1 type
fronts and thin ones for2 type fronts—is used also in Fig. 9
Dashed lines indicate the vortex field growing under the front.
8-11
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FIG. 9. Front properties of vortices with azimuthal wave numbersm50,1,21 in systems with and without through flow Re forR2

50, h50.5 as functions ofm5R1 /R1c(Re)21. Within each 232 block of ~a!–~i! the left column shows the axial wave numberk* and
the axial growth rateK* . The right column shows the front velocityv* and the frequencyv* in the laboratory frame. Thick lines
correspond to1 fronts, thin lines to2 fronts, respectively. Full~dashed! lines result from the saddle-point analysis of the dispersion rela
of the NSE~GLE approximation!.
026318-12
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approximation~cf. Sec. V B 1! and by invoking symmetry
relations~cf. Sec. V B 2!. We therefore continue the discu
sion of our results in Secs. V B 1 and V B 2.

1. Ginzburg-Landau amplitude equation approximation

Saddle point analysis~5.2!–~5.4! of GLE approximation
~4.13! yield the following front properties:

K6* 56A m

~11c1
2!j0

2
, ~5.5!

k6* 5kc2c1K6* , ~5.6!

v6* 5vg22~11c1
2!

j0
2

t0
K6* , ~5.7!

g6* 52v6* K6* , ~5.8!

v6* 5vc1vg~k6* 2kc!1~c12c0!
m

t0
, ~5.9!

for the two fronts withK1* .0 andK2* ,0, respectively.All
quantities appearing in Eqs.~5.5!–~5.9! depend on whethe
they refer to T(m50), L(m51), or R(m521) vortex
fronts. These GLE results are shown in Fig. 9 by das
lines.

They reasonably well describe the small-m behavior of
the correct front properties~full lines in Fig. 9!, which were
obtained from the correct dispersion relation of the NSE.
predicted by the small-m GLE approximation~5.5!–~5.9!
one finds that for smallm the axial growth ratesK* vary
}Am, that consequently alsok* 2kc andv* 2vg vary }Am,
and thatv* 2vc can have in addition also a contribution}m
whenc12c0Þ0. The latter is the case form561 irrespec-
tive of Re and form50 if ReÞ0.

Note that for TVF fronts withm50,Re50 the GLE pre-
dicts v* 50, whereas the correct dispersion in Fig. 9~a!
seems to show for smallm a variation ofv* }m2 that is
beyond the range of applicability of the GLE. Thus, und
the linear part of a moving TVF front there should be
nonzero phase propagation in the laboratory frame w
phase velocityv* /k* . The analogous behavior was foun
also for convection rolls in the Rayleigh-Be´nard system@27#.

At the boundary between convective and absolute in
bility, m5mc2a , the velocityv1* and the temporal growth
rateg1* of the 1 front vanish in the laboratory frame whil
v2* is positive there~and given by 2vg within the GLE ap-
proximation!. Note that according to Fig. 3 and Tables II a
III mc2a is zero for m50,Re50 and very small form5
61,Re50. Only for large enough through flowmc2a be-
comes sizeable. In the convectively unstable regime 0,m
,mc2a both, the1 front as well as the2 front of a vortex
pulse move into the same downstream direction as
through flow, 0,v1* ,v2* . In the absolutely unstable regim
m.mc2a , however, the1 front moves upstream and the
2 front moves downstream,v1* ,0,v2* .
02631
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In Ref. @10# it was remarked that the phase velocity
spiral patterns in axial flow through a system of radius ra
h50.95 @28# deviates from the critical one,vc /kc , of axi-
ally extended vortex perturbations. While we have done o
calculations forh50.5 our results of Fig. 9 and of the smal
m GLE approximation~5.5!–~5.9! shed some light on the
existence of such deviations. Since the experimental vo
structures grow in downstream direction under intens
fronts one strictly speaking would have to compare with
phase velocity under such fronts that connect in the ab
lutely unstable regime to the fully developed downstre
vortex pattern. Such a nonlinear analysis has been done
m50 patterns@23# but not for spirals. However, already th
phase velocitiesv1* /k1* under our linear1 fronts that grow
in downstream direction differ from the corresponding cri
cal phase velocitiesvc /kc of axially extended patterns—cf
Fig. 9 and Eqs.~5.5!–~5.9!.

2. Symmetries

The front properties shown in Fig. 9 are largely influenc
by the symmetry properties of the systemwithout through
flow, although a finite Re changes them.

Invariance of the field equations underz→2z for Re
50 implies that stationary perturbations withvc50 ~TVF!
under a1 front are mirror images of those under a2 front.
This implies for Re50 the symmetry relations

~K,v,v !1*
T52~K,v,v !2*

T , k1*
T5k2*

T . ~5.10!

These symmetry properties of the two front types ofT per-
turbations can be seen in Fig. 9~a!.

Now considerL andR perturbations. Here the invarianc
of the field equations underz→2z for Re50 implies first of
all that a spatially extended L-SPI with uniform amplitude
the mirror image of a spatially extended R-SPI. Furthermo
a L-SPI under a1 front with positiveK is symmetry degen-
erate with a R-SPI under a2 front with negativeK. Simi-
larly a R-SPI under a1 type front is the mirror image of a
L-SPI under a2 front. This implies for Re50 the symmetry
relations

~K,v,v !1*
L52~K,v,v !2*

R , k1*
L5k2*

R , ~5.11!

~K,v,v !1*
R52~K,v,v !2*

L , k1*
R5k2*

L . ~5.12!

They can be seen to be realized in Fig. 9~b! and Fig. 9~c!.
GLE approximation~5.5!–~5.9! shows beyond relations

~5.10!–~5.12! the following additional relations

k1*
T5k2*

T5kc
T , v1*

T5v2*
T50, ~5.13!

K1*
L52K2*

L5K1*
R52K2*

R , ~5.14!

v1*
L5v2*

L52v1*
R52v2*

R, ~5.15!

that follow from the fact thatvc
T5vg

T5c0
T5c1

T50, kc
R

5kc
L , vg

R52vg
L , t0

R5t0
L , c0

R52c0
L , c1

R52c1
L , and

j0
R5j0

L for Re50 @26#.
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VI. SUMMARY

We have determined the influence of an axial throu
flow on the spatiotemporal growth behavior of structura
different vortex perturbations of the basic Couette-Poiseu
flow in the Taylor-Couette system with radius ratioh50.5.
To that end we have solved the linearized NSE numeric
with a shooting method for vortex perturbations wi
azmuthal wave numbersm50 ~TVF!, m51 ~L-SPI!, and
m521 ~R-SPI! in a wide range of the parameters Re,R1,
andR2. Here symmetry properties allowed us to restrict o
selves to positive through flow Reynolds numbers Re.
each of the three different vortex varieties we have inve
gated ~i! axially extended vortex structures with homog
neous amplitudes,~ii ! axially localized vortex pulses consis
ing of a linear superposition of axially extended vort
modes with different real axial wave numbersk, and ~iii !
vortex fronts.

Central to our analysis is the determination of the co
plex dispersion relationss(Q) of the linearized NSE for
vortex modes with the three differentm. We have evaluated
s over the plane of complex wave numbersQ5k2 iK for
patterns~ii ! and~iii ! and along the realk axis for pattern~i!.
We have also determined the Ginzburg-Landau amplit
equation approximationsGLE(Q) in order to analyze its pre
dictions for the vortex stuctures~ii ! and ~iii ! in comparison
with the correct NSE dispersion relations(Q). In each case
symmetry relations are elucidated.

First, we have evaluated the critical bifurcation thresho
R1c(Re,R2 ,m) for axially extended vortex structures. The
.

rd

.

att

02631
h

e

ly

-
r

i-

-

e

s

using a saddle-point analysis ofs(Q) we have determined
the boundariesR1c2a(Re,R2 ,m) between absolute and con
vective instability of the basic state at which one of the fro
of the expanding vortex pulses reverts its propagation dir
tion in the laboratory frame. Here we have elucidated also
some detail how the different saddle topologies ofs(Q) and
of sGLE(Q) explain some of the shortcomings of the latte
Fit parameters for power-law expansions of the redu
boundariesec , ec2a , andec2a

GLE up to Re4 are listed in two
tables.

Finally, we have determined the linearly selected fro
behavior of growing vortex patterns withm50,61 for R2
50 under two different types of front intensity envelope
type 1 shows growth in positivez direction while type2
locates growth in negativez direction. The combination of
the three different dynamics of the constituent vortex mo
(m50,61) and of the two different spatial intensity profile
(1, 2) leads to six different fronts;ei (k* z2v* t)eK* (z2v* t)

in the laboratory frame. Their velocityv* , spatial growth
rateK* , wave numberk* , and frequencyv* as determined
via a saddle-point analysis of the respective dispersion r
tions differ in general from each other in the presence o
through flow.
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