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Spiral and Taylor vortex fronts and pulses in axial through flow
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The influence of an axial through flow on the spatiotemporal growth behavior of different vortex structures
in the Taylor-Couette system with radius ratip=0.5 is determined. The Navier-Stokes equatiONSE)
linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide
range of through flow strengths Re and different rates of corotating and counterrotating cylinders for toroidally
closed vortices with azimuthal wave numbmer=0 and for spiral vortex flow wittm= = 1. For each of these
three different vortex varieties we have investigafig@xially extended vortex structure@,) axially localized
vortex pulses, andii) vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes
with the three differenin are evaluated for real axial wave numbers(fpand over the plane of complex axial
wave numbers fofii) and (iii). We have also determined the Ginzburg-Landau amplitude equéBbE)
approximation in order to analyze its predictions for the vortex stuct(irgsnd (iii). Critical bifurcation
thresholds for extended vortex structures are evaluated. The boundaries between absolute and convective
instability of the basic state for vortex pulses are determined with a saddle-point analysis of the dispersion
relations. Fit parameters for power-law expansions of the boundaries uff tr&Rkisted in two tables. Finally,
the linearly selected front behavior of growing vortex structures is investigated using saddle-point analyses of
the dispersion relations of NSE and GLE. For the two front intensity prdfieseasing in positive or negative
axial directior) we have determined front velocities, axial growth rates, and the wave numbers and frequencies
of the unfolding vortex patterns with azimuthal wave numbars0,=1, respectively.
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I. INTRODUCTION axially opposite to R-SPI. This spiral dynamics is largely
induced by the advective properties of the basic flow state.
The Taylor-Couette systefi] of fluid flow in the annulus ~ Furthermore, without through flow the symmetry degenerate
between concentric cylinders with the inner and the outebifurcation threshold for these two symmetry degenerate SPI
one rotating with different velocities is one of the simplestsolutions is simultaneously also the bifurcation threshold for
examples of a driven nonlinear dissipative system that showa vortex flow solution called ribbor{$]. This solution con-
spontaneous pattern formation out of an unstructured baskists right at threshold of a linear superposition of L-SPI and
state that is stable at small drivifi§]. This basic flow state R-SPI with equal amplitude and it becomes further away
is stationary and axially and azimuthally homogeneous andtom threshold a genuine nonlinear vortex flow solution.
shows only a radial variation across the annular gap. It conHowever, here we are dealing only with linear vortex flow
sists of a superposition of circular Couette fld@CF in fields that may be superimposed with arbitrary amplitudes as
azimuthal direction and of an annular Poiseuille flocdéPF)  well as wave numbers and that are evolving separately from
in axial direction if as in our case an axial through flow is each other according to the linear field equations. Thus we
imposed. Axially periodic vortex flow solutions bifurcate do not need to discuss ribbons separately from our general
[6,7] out of this homogeneous basic flow when the rotationinvestigation of linear vortex modes with general axial and
rate of the inner cylinder is sufficiently high. These primary azimuthal wave numbers.
bifurcation thresholds to periodic vortex stuctures have been In this work we quantitatively determine the influence of
the aim of many linear stability analyses of the basic flowan axial through flow on the spatiotemporal growth proper-
state[8-13. ties of linear perturbations of the basic flow state with azi-
For the radius ratiop=0.5 and the parameter ranges of muthal wave numbersm=0 andm=*+1, i.e., of toroidally
rotation rates and through flow investigated here in thisclosed vortices and of spiral vortices, repectively. In each
work, three spatiotemporally differing primary vortex struc- case we investigatgé) axially extended structure§i) pulses
tures are relevant: Rotationally symmetric, toroidally closedof axially localized wave packets of vortices, afiid) vortex
vortices with azimuthal wave numben=0 that move in fronts.
downstream direction with the APF—for shortness we call In Sec. Il we describe the system, we briefly review the
this flow state Taylor vortex floWTVF) although the pres- linearized Navier-Stokes equatio$SE) for the eigenvalue
ence of an axial through flow modifies the genuine stationaryproblem describing vortex perturbations, and we give details
TVF stucture. And, furthermore, spiral vortex flo(@P)) of our numerical procedure to solve the eigenvalue problem.
consisting of either left spiral vorticg&-SPI) with m=1 or  In Sec. Il we discuss the spatiotemporal structure, symmetry
right spiral vorticegR-SP) with m=—1. properties, and bifurcation thresholds for onset of axially ex-
L-SPI and R-SPI are axial mirror images of each other intended vortex perturbations of the foref*** ™) with real
the absence of axial through flow with the latter breaking theaxial wave numbek and different azimuthal wave numbers
mirror symmetry of the former. While rotating azimuthally m in the absence and presence of an axial through flow. In
into the same direction as the inner cylinder L-SPI propagat&ec. IV we consider axially localized wave packets consist-
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ing of superpositions of vortex eigenmodes of the lineatWith infinitely long cylinders the only relevant parameter
NSE. Here we determine among others the boundary besharacterizing the geometry is the radius ragierq /r .

tween convective and absolute instability of the basic flow The velocity fieldu of the fluid is described by the
against growth of vortices with a particular by a saddle- Navier-Stokes equationt®SE) for incompressible fluid flow
point analysis of the linear complex dispersion relation of the

NSE over the plane of complex axial wave numbers. In ad- du=V2u—R;(u-V)u—Vp, V.u=0. (2.6
dition we also determine the Ginzburg-Landau amplitude

equation(GLE) approximation for the dispersion relation for Here and in the following we scale positions by the gap
the sake of comparison. In Sec. V we evaluate the spatiotemyidth d, the velocityu by the velocityr;Q, of the inner
poral properties of linearly selected vortex fronts using acylinder, timet by the momentum diffusion time?/» across
saddle-point analysis of the dispersion relation. Also here wgne gap, and the pressypdy pr,Q,v/d with p denoting the
compare with GLE results. The final section contains a sumgonstant mass density of the fluid. Furthermore, we decom-
mary. pose the velocity field

Il. SYSTEM u=ue +ve,+we, 2.7

Here we describe the system and we provide definitions . . .
and equations. Then we briefly review the linearized equa'—m.O radlz_il (u.), a2|muthal ¢), and axial(w) components
tions for the eigenvalue problem describing vortex perturba-usmg cylindrical coordinates, ¢,z.
tions of the basic flow state. Finally we give details of our
numerical procedure to solve the eigenvalue problem. B. Basic flow state

The basic flow stately that is realized in the absolutely
A. Setup stable regime of inner Reynolds numbeRs below the
We consider the flow of an incompressible fluid in the thresholds for onset of Taylor and spiral vortex flow is rota-
annulus between two concentric cylinders of inner radius  tionally symmetric, axially homogeneous, and constant in
and outer radius, with a gap widthd=r,—r,. The bound- time. It consists of a linear superposition of CCF in azi-
ary conditions at, andr, are no slip. The angular velocities Muthal directiore,, and of APF in axial directior, :
of the inner and outer cylinders afk; and(),, respectively.
! ’ = + .
The associated Reynolds numbers are Uo=vccr(r)€,+ Wapr(r)e, (2.9

d d without any radial component. Here
R1:;r191, R2=;r292, 2.0
veep(r)=Ar+B/r (2.9
where v is the kinematic viscosity. An externally imposed
axial through flow is measured by the axial Reynolds numbegnd
d r?+Cin(r)+D
Re=—(w), (2.2 Wape(r)=R = (2.10
where the mean axial velocityv) averaged over the annular
cross section describes the total through flow. We use also
the relative control parameters,
P L T 0a10 o1
Ry 1 Ry 1 2.3 n(l+7n) ’ '
== = 4, €E=——F— .
*“Ru(Re Ryc(Re=0)
. . . . 7(1-Q,/Q,)
measuring the relative distance of the inner Reynolds num- =, (2.12
ber R, from the critical onseR;. of axially extended spiral (1=n)(1=7°)
vortices or Taylor vortices in the presence and in the absence
(Re=0) of through flow, respectivelf14]. In this notation co 1+ 213
(1=n)in(yp)’ '
=0 and e(Re)=LRe)—l (2.4
He c R..(Re=0) ' . B
_(Qtpind-g) 1 (2.1
is the critical threshold for onset of the vortex flow in ques- (1—=n)In(n) (1— ,7)2’ '
tion. The relation betweep ande is
—e(Re 1 1-7°+(1+7)In(7y)
M:L()_ 2.5 E=-5R - . (2.15
1+€.(Re) (1=m)%In(7)
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C. Linear eigenvalue problem of vortex perturbations

1 im ]
Let ¢=(u,v,w,p) abbreviate the deviation fields from OzﬁrU+FU+TV+IkW' (222

basic flow stat€2.8). Then the general solution of the NSE
linearized in the deviation fields can be written as a superpo¥he solution of this eigenvalue problem yields the character-

sition of modes of the form istic exponento and the associated eigenfunctiofér) as
) functions ofk,m. Here
W(r,¢,2,t)= g(r)e kzrmolet (2.16
R
with axial wave numbek=27x/N and integer azimuthal F(r)=Tlvccp(r), G=—-RJA, (2.23
wave numbem. The complex amplitude functions
d(r)=[U(r),V(r),W(r),P(r)] (2.17 H(r)=RywWapr(r), 1(r)=3H(r) (2.29

depend on the mode indicksm and the radial coordinate  are quantities defining basic flow sta#8). The latter enters
The characteristic exponea(k,m) is in general complex. It Via the linearized advective term of the NSE.

is decomposed here as follows: In order to rewrite Eqs(2.19—(2.22 into a system of
first-order differential equations—which is advantageous for
o=Resr+ilmo=y—iw (2.18 numerical reasons—we introduce three additional complex

. o amplitude functiong11]
into the growth ratey and the characteristic frequenayof

the k—m mode. Substituting the above solution ansatz into 1
the linearized NSE vyields X=9,U+ FU - P, (2.25
L, 1 1im* 1
oU= 8r+F(9r— 2 —k“|U+2FV Y=4,V+ FV' (2.26
o[ 2 - Z=,W (2.27
—d,P—im| S V+FU —ikHU, (2.19 rvve :
r

Using EQq.(2.25 and the continuity Eq(2.22 one can then

1 1+ m2 im eliminate the pressure in Eq2.20 by P=-X—-ikW
oV= <9r2+ —0h—— —Kk?|V+2GU— —P —(im/r)V. All in all one obtains in this way a system of 6
r r r coupled, first-order differential equations
2 _
+im(—2U—FV —ikHV, (2.20 I X=LX (2.28
r
for the six variables
1 m?
oW= ar2+Fﬁr——z—kz)w—ikp—imFW—IU—ikHW, X=(U,V,W,X,Y,Z)T (2.29
r
(2.21) with
|
1 m
- = —i— —ik 0 0 O
r r
1
0 - 0 0 1 0
0 0 0 0 0 1
m
L= L 2(i—2—F) 0 0o 0 o0 |, (2.30
r
. 2 mk m
-2li—=+G L+ — — —-i— 0 O
mk 1
[ - L+k* —ik O -
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where Here the constant phase coming from the amplitg¢de) is
suppressed. Thus, on tlge-z plane of such an “unrolled”

2 cylindrical surface these lines of constant phase are straight.

m
L=a’+—2+k2+imF+ikH. (2.31)
r 1. Taylor vortexlike patterns—m0

For rotationally symmetric Taylor vortexlike perturbations
the line pattern of constant phases is parallegto The m

We have solved eigenvalue equatid@s28 numerically =0 pattern is stationary for Re0. Only for finite through
with a standard shooting method subject to the six boundaryjoy it propagates axially with phase velocity

conditions,

D. Numerical procedures

(O]

U=V=W=0 at ri=79/(1-7%) and r,=1/(1-175), Wphasé™ 1 (3.2
(2.32

which make the eigenvalue spectrum discrete. To integratthat is proportional to Re. The main reason for this is that the
from r, to r, we used a fourth-order Runge-Kutta formula @zimuthal flow of the basic CCF state is precisely parallel to
[15] with two step widths Ar=1/200 and 1/400, respec- the vortex lines of constant phase, while the APF flow being
tively) for a Richardson extrapolation. A Newton-RaphsonpPerpendicular to them can advect them. The latter happens in
method[16] was then used to find the roots of the complexour axially periodic system that does not exert any phase
determinant of the 8 3 matrix, which ensures the vanishing Pinning at the axial boundaries as soon as-Re

of U,V,W at the outer cylinder. We therefore, vary in the )

Newton-Raphson procedure only two of the parameters ( 2. Spiral patterns—n#0

7, Ry, Ry, Re,m, k) [8] that enter into Eq(2.28 while Vortex modeg2.16) with axial wave numbem=0 have
keeping the others fixed. In this way we determine on onepiral structure. Whem/k is positive(negative the lines of
hand, the marginal threshold valuesRf andw with y=0  constant phase,(¢,t) (3.1) wind in a L-SPI(R-SP) around

for which the basic state is marginally stable against thehe cylindrical surfacer=const with negative(positive
growth of an extended perturbation with givemand real  sjoped,z,=—m/k. The lines of constant phase and with it
axial wave numbek at specified parameterg, R, Re. On  the whole spiral stucture rotates in rigidly with angular

the other hand, we calculate for givem 7, R;, R, Re the  velocity

complex eigenvalues over the complex wave number

plane—including as special case also the keakis. In each . o)

case, we are interested only in the vortex modes with the PSPIT (3.3
largest growth rates for which the associated amplitude func-

tions ¢(r) display the least radial variation with the fewest |n the absence of an externally imposed through flow, Re
number of nodes. =0, this rotation proceeds for L-SPI and R-SPI alike into the
We present here results for the radius ratie 0.5 in a  same direction as the rotation of the inner cylinder. The rea-
range of outer Reynolds numbers150<R,=<50. In this  son is that the spiral perturbations are advected by the inner
parameter regime the vortex perturbations with the largespart of the azimuthal CCF, which is relevant for the centrifu-
growth rates have in the absence of through flow azimuthaya instability leading to vortex generation. A model explain-

wave numbers of eithem=0 or m==*1 [11]. We investi-  ing this effect is presented in RdfL7].
gate here linear properties of such vortices with-0 and There are two immediate consequences of this advective
m==1 in a through flow of Reynolds numbers20<Re  origin of the spiral dynamics induced by the inner cylinder’s
<20. rotation: (i) With the latter being by definition positive—in
this work the inner cylinder is taken to rotate in positive
I1l. AXIALLY EXTENDED VORTEX STRUCTURES e-direction—alsow(k,m)/m is positive for Re=0. Hence,

. . say, anm=1 (m=—1) spiral has positivdnegative fre-
Here we discuss the spatiotemporal structure, symmetr&uency for Re=0. (ii) Then a L-SPI(R-SP) being defined

properties, and bifurcation thresholds for onset of axially eX'by m/k>0 (m/k<0) propagates for Re0 upwards(down-
tended vortex perturbations with real axial wave number ward$ with positive (negativé axial phase velocity

and different azimuthal wave numbearsin the absence and

presence of an axial through flow. ® m

thase:F = ?‘PSPI (3.4
A. Spatiotemporal structure

Structure and dynamics of vortex mod@s16 are domi- that is directly related to itpositiveangular velocityegp,.
nated by the fact that their phases are constant on any cylin- An externally applied axial through flow changes the axial
drical surfacey =const, along lines given by the equation phase velocities and frequencies of the-0 andm+0 vor-

tex modes roughly proportional to Re, i.e.,
m w(k,m) ghly prop

Wphasd K;M,RE —Wphasd k,m,Re=0)xRe. (3.5
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TABLE |. Transformation behavior of the eigenvalues and
eigenfunctions of the eigenvalue problem E@28—(2.31) under
symmetry operations. Herk denotes the identityB complex con-
jugation, C axial reflection, and complex conjugatioriindicated
by an overbarcombined with axial reflection.

Operation

A B C D
k— k —k -k k
m— m -m m -m
Re— Re Re —Re —Re
o— o o [oa o
U— U U U U
V— \Y 2 \Y, 2
W— w w -W —-W
X— X X X X
Y— Y Y Y Y
Z— z Va -Z -7

Simultaneously the rotation rateésp|=wphasg</m, of the

spirals are changed accordingly. Thus, in each case the vor-

tex frequencies are largely determined by the basic state
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FIG. 1. Critical bifurcation thresholdR,.(R,) for m=0 and
==*1 vortex patterns with the respective critical wave numbers,

'r%

advective properties, i.e., by the combination of azimuthakc(m,Rz), as functions oR, in the absence of axial through flow.

advection byv ccr and axial advection bwapr.

B. Symmetries

Here we consider symmetry properties of axially ex-
tended vortex perturbations of the form Eg.16 with real
wave numbek. Symmetry relations between different vortex
fronts with complex wave numbé&) are discussed later on in
Sec. VB 2.

Table | shows the symmetry transformations that leave the

eigenvalue problem unchanged. They refl@cthat £ trans-
forms under complex conjugatidindicated by an overline
as

L(k,m,o)=L(~k,~m,o) (3.6
and (ii) that the NSE Eq(2.6) are invariant under an axial
reflection ¢,Rew)—(—2z,—Re,—w).

Thus one infers, for example, that the growth réte-
guency of the characteristic exponent=y—iw for m=0
vortices is an evefodd function ofk and Re. For perturba-
tions withm+ 0 one finds that

v(k,m,Re) = y(—k,—m,Re)=y(—k,m,—Re)

=vy(k,—m,~Re), (3.7)
w(k,mRe=—w(—k,—m,Re)=w(—k,m,—Re)
=—w(k,—m,—Re), (3.8

The vertical lines mark the two representative outer Reynolds num-
bersR,=0 andR,= —125 that are investigated in more detail in
this work. The radius ratio i$y=0.5.

Note, however, that any finite through flow breaks the axial
mirror symmetry betweeh andR spirals at Re=0 so that,
among others,

Yr(—Re)=7y (Re)# yr(Re =y (—~Re) (3.9
when Ret0. But the symmetry relations are such that it
suffices to investigate, say, positikeombined together with
either(i) m>0 only for positiveand negative Re or, equiva-

lently, (ii) m positiveand negative for Re-0 only in order to
get the complete linear information on both spiral vortex

types.

C. Bifurcation thresholds

Figure 1 shows theritical bifurcation threshold®;.(R,)
for m=0 andm=*1 vortex patterns with the respective
critical wave numbersk.(R,), as functions ofR, in the
absence of through flow.

The vertical lines in Fig. 1 mark the two outer Reynolds
numbersR,=0 andR,= — 125 for which we show in Fig. 2
as representative examples how the critical thresholds evolve
with through flow Reynolds number Re. The above dis-
cussed symmetry relatioyg(—Re)= vy, (Re) between the
growth rates ofR and L spirals implies the corresponding
relation between the respective bifurcation threshdfdf

and that the spatiotemporal structure including the amplitudand dashed lines in Fig).2n the remainder of this paper we

functions of aL-spiral perturbationk/m>0) at Re>0 is the
same as that of &-spiral pertubation K/m<0) at Re<O0.

therefore restrict ourselves without loss of information to
positive Re.
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FIG. 2. Evolution of the critical bifurcation thresholé.(Re)
for m=0 andm= =1 vortex patterns with through flow Reynolds ;
number Re. The two outer Reynolds numb&s=0 and R,=
—125 are marked in Fig. 1. The radius ratioss- 0.5.
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For small Re-0 the axial flow stabilizes the basic state
against growth of TVFifh=0) and R-SPI (h=—1) pertur- R o
bations. On the other hand, the bifurcation threshold for 0 5 10 0 5 015
L_-SPI_ (m=1) vortex patterns that propagate into the same Re Re
direction as the through flow decreases at small Re and in-
creases only at larger Re. The upwards shift of iive O R2=—125 R,=0
threshold with increasing Re is stronger than that fior
=1. Thus, eventually the latter comes to lie below the FIG. 3. Stability boundaries of the basic flow state as functions
former and consequently the growthlokpirals propagating of the through flow Reynolds number Re. Dotted lines show the
into the same direction as the through flow is favored forreduced critical bifurcation thresholds (2.4) for axially extended
sufficiently large Re even wheR,=0. vortex patterns. The ful{dashedl boundary linese._,, between

Dotted lines in Fig. 3 show the reduced critical thresholdthe convectively and absolutely unstable parameter regions for vor-
curveses(Re) (2.4) as functions of Re for the two represen- tex growth were obtained from the eigenvalues of the full NBE
tative outer Reynolds numbeR,=0 andR,=—125. The GLE approximatiop—cf. Sec. IV. The radius ratio i=0.5.
other lines in Fig. 3 are discussed in Sec. IV. Our numerical
results fore.(Re) that were obtained in steps 6fRe=1  control parameters};>R;(m), a finite band of axial wave

were fitted in the range Re— 20 - - 20 to the following ex- humbers can grow and with it also axially localized wave
pression: packets consisting of superpositions of vortex modes.

f=a;Reta,Re+azRe’+a,Re". (3.10 A. Vortex packets
The fit parameters,, are listed for differenR, in Tables II Let us consider first an infinitesimal initial perturbation
and lll for TVF (m=0) and L-SPI (n=1), respectively. With azimuthal wave numbem that is axially localized, i.e.,
The threshold curves for R-SPin=—1) are obtained ac- & wave packet that consists of a superposition of vortex
cording to Sec. Il B from those for L-SPI by Re—Re, i.e., modes of differenk but commonm—an initial perturbation
by changing the sign of the odd coefficients in Table 1ll.  containing differentm modes would be just a sum of the
above described vortex packets that would evolve indepen-
dently of each other as long as the linear description is valid.
After fast transients have decayed a pulselike perturbation
So far we have considered axially extended vortex pertursurvives with axial wave numbers within the unstable band
bations of the formy(r,¢,z)=¢(r)e'®**M) which are centered around the wave number of maximal growth
single eigenmodes of the operat®n(2.30. For supercritical ~ ky,,(m)=k.(m). Since the above described wave packet

IV. LOCALIZED VORTEX PERTURBATIONS
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TABLE II. Fit parameters for the Re dependence of the stability boundaries of the basic state against
growth of TVF (m=0) perturbations for differenR,, reduced critical bifurcation threshole of axially
extended vortex patterns and boundagy , between the convectively and absolutely unstable parameter

regime. HereeC'F is obtained from the GLE approximatidof. Sec. IV C 2.

R, —150 —125 —100 —-75 —50 —-25 0 25 50

e.=a,Re’+a,Re
a,X 10 0.590 0.795 1.089 1.502 2.083 3.115 3.679 2.447 1.307
asx 10° 5.181 3.966 1.151 —-2.804 —-3.385 —15.62 —34.97 -—-1455 -—-0.958

€c—a™ azRez+ a4Re4
a,x10° 1.181 1.451 1.854 2.516 3.906 5.588 6.238 4.338 2.483
a,x 10 0.116 0.139 0.182 0.293 —2.583 —4.642 -5.716 —3.682 —1.740

eStE=a,R&+a,Re
a,x 10° 1.161 1.416 1.800 2.517 4.068 6.547 7.732 5.152 2.762
a,x10° -0.164 -0.268 —0481 —-1.011 —2.106 —3.807 —4.900 -—3.022 -—1.425

contains vortex modes that can grow the pulse will grow agiotemporal growth behavior of an axiallpcalized vortex
well. Simultaneously the pulse center travels axially forperturbation differs significantly from an axiallgxtended

small e with the critical goup velocity vortex mode. The growth of the latter is axially uniform,
which is not the case for the former.
v :aw(k) _ (4.1 Furthermore, one has to distinguish between two different
9 gk K supercritical regimes for the forme(i) In the so-called con-

C

vectively unstable parameter regime of the basic state the
Hence when at a bifurcation threshold the frequency is nonvortex packet moves away with the velocity faster than it
zero with a finite group velocity then the supercritical spa-grows—while growing in the frame comoving with, the

TABLE IIl. Fit parameters for the Re dependence of the stability boundaries of the basic state against
growth of L-SPI (n=1) perturbations for differenR,, reduced critical bifurcation threshok} of axially
extended vortex patterns and boundagy , between the convectively and absolutely unstable parameter
regime. HereeS'E is obtained from the GLE approximatidof. Sec. IV C 1. The results for R-SPIni=
—1) perturbations are obtained according to Sec. Ill B from those for L-8R{1) by Re—~—Re, i.e., by

changing the sign of the odd coefficients in the table.

R, —150 —125 —100 —75 —50 —-25 0 25 50

e.=a,Ret a,Ré+azRe’+a,Re’
a; X 10° —-1582 -—-2365 -—-3513 —-4.887 —-6.143 —-5.833 -—-3.372 —-1.402 -0.514
a,X 10* 0.957 1.199 1.496 1.925 2.520 3.174 3.197 1.806 0.581
azXx 10 —-9.181 -—-9.001 -—-8.485 -—-7.678 —6.741 —4.172 -—-3.832 —3.572 -—3.685
X 10° 1.018 —-0.378 —-0.180 -0.563 -—-3.673 —21.77 —36.15 —5.707 19.92

€._,=ao+a;Ret a,Ré+azRe+a,Re
agx 10° 2.358 5.497 3.775 —1.237 4.095 12.25 18.96 10.09 2.610
a; X 10° —-3.268 —3.578 —3.048 -—-0.449 0.926 1.159 1.012 1.217 1.455
a,x 10° 1.532 1.964 2.618 3.539 4.351 5.535 6.036 4.357 2.603
azXx 10° 8.408 11.87 14.97 9.992 6.487 4.919 3.680 1.3670.143
X 10° —-0.169 -0.368 —-0.815 —-1977 —2.809 -—-4.068 —4.827 -—-3.203 -—1.549

eS'E=a,+a,Ret a,Ré+azRe +a,Re
agX 10° 1.101 —2.541 1.405 2.529 3.458 3.998 3.641 1.320 0.062
a; X 10° —-4.117 0.755 —1.044 -0.318 0.831 2.063 1.495 1.377 1.625
a, X 10° 2.030 2.792 2.820 3.435 4.437 6.166 7.265 4.981 2.723
azXx 10° —8.845 —-30.34 -7.121 4.780 10.58 8.229 —8.191 -—-12.58 —-10.03
X 10° —-0.822 —-2.713 —-1136 —-1.004 -—-1674 —2923 —-3.799 -—-2.234 -0.854
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pulse moves out of the system so that the basic state is re- o(Q)=Rec(Q)+iIma(Q)=yQ)—iw(Q) (4.3
stored[18,19. In other words, the two fronts that join the

pulse intensity envelope to the structureless state propaga the parameterR,, R,, Re, 7 and we also do not indicate
both in the direction in which the packet center mov@$In  hat the dispersion relations for vortex perturbations with dif-
the so called absolutely unstable parameter regime th@yrent azimuthal wave numbers are different. The bound-

growth rate of the packet is so large that one front propagategyy condition of no growth for a front that is stationary in the
in the laboratory frame opposite to the center motion. Thusjaporatory system is

the packet expands not only into the direction of the pulse

motion but also opposite to {t18] so that eventually the Reo=0 (4.4)
initial perturbation can fill the entire system. But the linear '
growth analysis of the vortex fields does not determine in . . . i
what nonlinear final stable state the system will end nor wha feTiv:\?grr?S;%t; S?ggggﬁj Olilélgg*c’ffgl(o(\?v)s 'fnrc;[rr:]e com
possible intermediate nonlinear transient behavior mighP P :

occur.
However, this analysis has an important implication for do(Q) =0 (4.5
experiments with through flow: Developed vortex structures dQ o

can be seen in finite systems with vortex suppressing inlet

conditions only in the absolutely unstable regime, which isor fixed m, R,, Re, 7 Egs. (4.4 and (4.5 yield Ry._,.
typically realized at largeR,> Ry (cf. Fig. 3 if one leaves  Here and in the following the subscrigt—a identifies
aside noise-sustained pattef@8,21] in the convectively un-  poundaries between convective and absolute instability.
stable regime. In this latter regime, the vortex front that con-Thys, e.g., the basic flow state is convectiviapsolutely
nects to the zero amplitude inlet condition moves downynstable against vortex perturbations with azimuthal wave
stream(we assume that the fronts of our forwards bifurcatingnymber m for R;.(m)<R;<Rjc_a(M) [R;>Ric_a(M)]
vortex structures are linearly selected thus excluding thgng apsolutely stable wheRy <Ry (m).

buildup of nonlinear fronts that might revert their propaga- \ve are interested here in the Re dependence of these

tion direction. In the absolutely unstable regime, on theyresholds and we will discuss to that end the reduced
other hand, an upstream motion of this front is stopped byyoyndary quantities

the inlet condition at a characteristic downstream growth
length from the inlet. This growth length of the downstream Ryic_a(RE)
evolving vortex structure divergé22,23 when approaching Uea(RE) = e 7
the boundary between convective and absolute instability Ric(R®)
from the latter regime.

It is remarkable that based on the experimental observand
tions of Takeuchi and Jankowsk®] such a behavior was

1 (4.6

discussed already in 1976f. Figs. 4 and &) in Ref.[9] and _ Ry(Re h _ B

their discussion in Sec. VI of Refi9]], albeit without invok- e(Re)= R;.(Re=0) —1, where x=c or x=c-a.
ing the concept of absolute and convective instabilit@] 4.7
which was introduced to a broader fluid dynamics commu-

nity only a few years latef19]. Because of the symmetries ofQ), of its saddle-poin©Q*,

and of the resulting boundaiy;._,(m,Re) one has
B. Boundary between convective and absolute instabilities:

Saddle-point analysis k* (—m,—Re)=k* (m,Re), (4.9
The boundary between convective and absolute instabili-
ties of the basic flow against growth of vortices with a par- K*(—m,—Re)=—K*(m,Re), 4.9

ticular azimuthal wave numben is marked by those param-
eter combinations for which one of the fronts of the linear
packet ofm vortices reverts its propagation direction in the
laboratory frame: In the convectively unstable parameter re-
gime this front propagates in the same direction as the center €c—a(—M,—Re)=¢€._a(M,Re), (4.1
of the packet, in the absolutely unstable regime it moves
opposite to it, and right on the boundary between the twd0 that it suffices again to investigate only positive through
regimes the front is stationary in the laboratory frame. flow.

This parameter combination can be determined by a
saddle-point analysis of the linear complex dispersion rela- C. Numerical procedures
tion o(Q) over the plane of complex wave numb¢gs19]

He—al—m,—Re)=puc 4(M,Re), (4.10

In order to determine the boundary between convective

Q=ReQ+iImQ=k—iK. (4.2  and absolute instabilities via the solution of E¢4$.4) and
(4.5 one has to evaluate the dispersion relatiof@Q) for
Here we do not display the dependence of complexQ [21,24). To that end we solved eigenvalue prob-
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lem (2.28 of the full field equations focomplex Q(cf. Sec.
IV C 2). In addition and for comparison we used f@(Q)

the Ginzburg-Landau amplitude equation approximation that

only requires knowledge a¥(k) along the reak axis.

1. Ginzburg-Landau amplitude equation approximation

Within this approximation the dispersion relatie{ Q)
for vortex modes is expanded @andR; around the critical
pointk., Ri.

1 P )
o(Q,Ry) =0+ ((?Q) (Q—ke)+ Q2 (Q—ke)
Jo

R (4.12

) (R;—Ry)+h.ot.

2

_ I
wcﬂvg@fkc)f;Z<1+|cl><ofkc>2

N (1+icy)

70

m+h.o.t. (4.13

The expansion coefficients in the above expressions app

also in the linear parts of the Ginzburg-Landau amplitud
equation[5]. They are obtained from the numerical solution

of the eigenvalue problem, E¢R.28), of the full field equa-
tions for realk close to the critical poinf25,26].

Within the GLE approximation one gets from Eq4.4)
and (4.5

Q*: B Cl’T()Ug ; ’Tovg
C201+eDE 2(1+cDE
-~ - - (419
Jk K*
vgTo 4.15
Iu’C*a 4(1_"_05)5%5 .
and
i
€. a(RE) =€, (Re)+ 9—2[ +e(RO)].
4(1+c)HE
(4.16

Note that the GLE coefficientsy, 7o, £y, Co, C1 depend on
m, R,, Re, 7. Form=0 andR,=0 also the nonlinear coef-
ficients of the GLE have been obtained for sevepabs
functions of Re[25].

2. Dispersion relationo(Q) of the NSE for complex Q

e
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o(Q). Having determine@(Q) as described in Sec. Il D we
solved Eqs(4.4) and(4.5) for Ry;_, in the form

dy(Q) dy(Q)
K "ok

=0 (4.17)
Q*

Q*

¥(Q*)=0,

that follows from using the Cauchy-Riemann relations for

o(Q).

D. Results

In Fig. 4 we show the Re variation of the real and imagi-
nary parts of the relevant saddle-po@t =k* —iK* at the
boundaryR;._, for two characteristic case$a) L-SPI (m
=1) atR,=0 and(b) R-SPI (m=—1) at R,=—125. In
each case ful{dashed lines were obtained from the correct
NSE (approximate GLEdispersion relatiorr(Q).

Case(a) is representative for a situation where the GLE
approximation reasonably well reproduces the correct
result—at least for small Re—and starts to deviate signifi-
cantly only for larger Re. On the other hand, in c@sethe
GLE approximation tdk* displays a smooth variation with
Re that reflects the smooth variation of the sadQg ¢
f}.l@ of o e(Q) (4.13 while the real park* of the saddle

ocation of the correct dispersion relation undergoes a dra-
matic change around Re0.8. The reason is that the surfaces

~~~
2 7
—
~ =
S
2
5 T T T T 5
—~
S) 7
—
~ =
-
* s

FIG. 4. Evolution of the coordinatds® and K* of the saddle

To assess the quality of the GLE results for the boundarysint that determines the boundaRy,._ ., between convective and
between convective and absolute instability we determined@psolute instability with through flow Reynolds number Re. Full

the dispersion relation of the NSE not only for r&allose to
the critical point but for complex axial wave humb&<ghat
lie in the vicinity of the relevant saddle locatior3* of

(dotted lines are evaluated with the correct NSEpproximate
GLE) dispersion relation. Filled circles itb) at Re=5 mark the
coordinates of the saddle in Fig. 5. The radius ratigs0.5.
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0.8 T T T T T T
~ 0.6
(o]
2
>
N—’
?-.
04
w
7 3 2 021
6 1
/B K ()
FIG. 5. Real partgy(Q) of the two biggest eigenvalues of the
NSE over the compleX) plane form=—1, R,=—125, Re=5,
Mw=pc—a, 7=0.5. The filled circle marks the saddle #fQ*) 0
=0 that determines the boundary beteen convective and absolute . L - L . L
instability. 0 3 10 15 0
Re

of ¥(Q)=Rec(Q) over theQ plane for the two largest ei- FIG. 7. Stability boundaries of the basic flow state as functions
genvalues intersect and change their order alongytagis.  of the through flow Reynolds number Re for=1, R,= — 125.
Thus, the saddle that is relevant for tbea transition and  The full (dashed boundary linesg._,, between the convectively

and absolutely unstable parameter regions for vortex growth were
K (1/d) K (1/d) obtained from the eigenvalues of the full NSEhe GLE
0 1 2 3 4 5 0 1 2 3 4 5 6 approximation—cf. Sec. IV. Dotted lines show the reduced critical
S T L L B B B AR R R bifurcation thresholdg, (2.4) for axially extended vortex patterns.

| (a) k=2.5 | (b) k=2.92 The radius ratio isy=0.5.

40

40

that has the largesy value switches from one eigenvalue
surface to another. Similarly, the eigenvalue surface might
have another saddle and their orderingyichanges. In con-
trast to that the GLE approximation produces only a single
eigenvalue tracing out the smooth surfacg ¢(Q) (4.13.

To give an impression of such an intersection of the cor-
| rect dispersion surfaces we show in Fig. 5 their real parts
] 60 over the compleXQ plane at Re5,u=u._,. Full lines in
Fig. 6 show different constait-sections through them in the
intersection range. At Re5,u= u._, the saddle has moved
already away from the intersection region. The saddle coor-
dinates Q*=4.73-i1.76, y* =0) are indicated in Figs. 4
and 5 by full dots.

While the saddle location®g, ¢ of the GLE approxima-
tion o¢ e(Q) (4.13 can differ substantially from the saddle
Q* of the correct dispersion relation the difference in the
boundaries between convective and absolute instability is
L 4 ] typically much less pronounced—cf., e.g., the dashed and
60—t L L full c)urves fore._, in Fig. 3. There the GLE resulfslashed

lines) agree in each case quite well with the correct bound-
K (1/d) K (1/d) aries (full lines) up to, say Re5. However, as a conse-

FIG. 6. Full lines are sections through the surfacesy¢®)  duence of the typical increase of the reduced boungary,

(Fig. 5 for the two biggest eigenvalues of the NSE at constantWith increasing Re the quality of the GLE results fog_,
values ofk in the vicinity of the intersection of the surfaces. Dashedgenerally deteriorates. After all the GLE is strictly valid only
lines showy(K) obtained from the GLE approximation to the dis- for u—0. Figure 7 shows an examplenE 1, R,= —125),
persion relation. Parameters ame=—1, R,=—125, Re=5, »  Where the GLE prediction for the boundary shows even a
=fc_a, 7=0.5. qualitative different variation with Re for, say, R45. We

20

0
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have observed similar behavior—partly at larger Re—also
for other combinations ofn, R,.

Tables Il and Il contain the coefficients for fitting our
results fore._,(m=0,R,,Re) ande._,(m=1,R,,Re) in the
same way as described in Sec. Il C. Also here the boundary
curves for R-SPI ih=—1) are obtained according to Sec.
[l B from those for L-SPI (n=1) by Re——Re, i.e., by
changing the sign of the odd coefficients in Table III.

V. FRONTS AND PULSES

The vortex fronts that we are investigating here and that
appear also as constituents of vortex pulses are perturbations
of the basic state, where the fieldscally) have the form

wNei(k*Z—w*t)eK*(Z—U*t)eimzp (51)

in the laboratory frame. This form describes long-time spa-
tiotemporal properties of uniquely selected linear frdiis
Axial front velocity v*, axial growth rateK* of the front
envelope, wave numbed* of the vortex pattern under the

; . .
front, gnd Its freguencyu are dgtermllned by .the saddle and of — type fronts connecting to the basic stateat —~ and at
behavior of the linear complex dispersion relatio(Q,m) ;. respectively. This line convention—thick ones for type
=v(Q.m)—iw(Q,m) of the field equations over the plane fronts and thin ones for- type fronts—is used also in Fig. 9.

O_f 'complex axial wave nU.mbeQ:k_.iK- Since SUPErPO-  Dashed lines indicate the vortex field growing under the front.
sitions of vortex perturbations with different evolve inde-

pendently from each other within the linear description as—> and of a— front for z—o. Correspondingly the Egs.
mentioned already in Sec. IV A. We consider here only(5.4) have two different solutions: one of them describes a
fronts of vortex perturbations that have a common azimuthat- front and the other one & front. A schematic plot of the
wave numberm and we do not always display the latter different envelope types can be seen in Fig. 8.

Front type: -

FIG. 8. Schematic plot of different vortex fronts. Thick full lines
in (a) and thin full lines in(b) show intensity envelopes of type

explicitly.
The saddle condition iE5]

d

We identify the vortex pattern that is unfolded under a
front either by its azimuthal wave numbwror by the super-
scriptsT, L, R. HereT refers to a TVF-like pattern of vortices
with m=0, L denotesL-spiral vortices withm=1, andR
identifiesR-spiral vortices withm= —1. Hencem or equiva-
lently the superscripts identify the spatiotemporal structure

And the stationarity requirement that the temporal growthof the vortex pattern growing under the front. In this work,
rate of the front vanishes in the frame comoving with thewe restrict ourselves to these three vortex varieties. Since

front velocityv* demands that they appear under the above described two front envelopes,
there are six different fronts that we have investigated here.

0= Re[a'(Q)+in]|Q:Q*= y(Q*)+v*K*. (5.3

We combine Eqs(5.2) and (5.3) into the three equations

* J J
. z(f) , 7(;?) =0 (5.4
K Q* Q*
that we have solved far* ,k* ,K*.
A. Notation

The front envelope of Eq(5.1) varies axially withe<"Z.

If K*>0, then the perturbation grows at —« out of the
basic state. We call such a front to be of typeand identify
the associated front properties by a subsctiptOn the other

hand, forK* <0 we have a front of type- with an intensity

B. Results

In Fig. 9 the results of our investigations are shown for
fronts with azimuthal wave numbers=0, 1, and—1 for
axial through flow Reynolds numbers R@, 10, and 20. In
each case the outer cylinder is at ré&t=0. The front prop-
erties are presented as functions of Within each 2<2
block of figures(a)—(i) the left column shows real pakf*
and negative imaginary pakt* of the saddle point and the
right column shows the front velocity* and the frequency
w*, respectively. They all start at=0 since vortex growth
is possible only above the critical threshold, i.e., Ry
>R;.(Re). The twocritical fronts at this threshold are de-
generate K* =k} =k, o* =w}=0, vi=0vi=0vy) with
vanishing axial growth rate* =K* =0. For u>0, how-

envelope that joins at=c with the basic state. So the two ever, + and — fronts differ from each other thus reflecting
subscripts* identify the axial variations of the front enve- differences in the respective saddle points.

lopes. A pulselike perturbation of the basic state would con-

sist suffiently away from its center of & front for z—

The variation ofk*, K*, v*, andw* with « and Re is
best understood by comparison with the corresponding GLE
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Re=0

§ .
- *
—
1
7
)
Ky
3
) "
N
1
(D)
a7 g
"M

m=0 m=1 m=-1

FIG. 9. Front properties of vortices with azimuthal wave numbmes0,1,—1 in systems with and without through flow Re fBp
=0, =0.5 as functions oz =R; /R;;(Re)—1. Within each 22 block of (a)—(i) the left column shows the axial wave numbér and
the axial growth rateK*. The right column shows the front velocity* and the frequencys* in the laboratory frame. Thick lines
correspond tot+ fronts, thin lines to— fronts, respectively. Fulldashegllines result from the saddle-point analysis of the dispersion relation

of the NSE(GLE approximatioin
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approximation(cf. Sec. VB 2 and by invoking symmetry In Ref. [10] it was remarked that the phase velocity of
relations(cf. Sec. V B 3. We therefore continue the discus- spiral patterns in axial flow through a system of radius ratio
sion of our results in Secs. VB 1 and VB 2. 7n=0.95[28] deviates from the critical oney./k., of axi-
ally extended vortex perturbations. While we have done only
1. Ginzburg-Landau amplitude equation approximation calculations forp= 0.5 our results of Fig. 9 and of the small-
Saddle point analysiés.2—(5.4) of GLE approximation ~# GLE approximation(5.5—(5.9) shed some light on the
(4.13 yield the following front properties: existence of such deviations. Since the experimental vortex
structures grow in downstream direction under intensity
fronts one strictly speaking would have to compare with the
K* = + /L (5.5) phase velocity under such fronts that connect in the abso-
- (1+ci)§é’ lutely unstable regime to the fully developed downstream
vortex pattern. Such a nonlinear analysis has been done for
k% =k,—C K%, (5.69 m=0 patterng23] but not for spirals. However, already the
- - phase velocities? /k* under our lineart+ fronts that grow
gg in downstream direction differ from the corresponding criti-
vgzvg—2(1+c§)T—OK§, (5.7  cal phase velocities/k, of axially extended patterns—cf.

Fig. 9 and Eqgs(5.5—(5.9).

Yi=—viK%, (5.9 2. Symmetries
The front properties shown in Fig. 9 are largely influenced
* _ * M by the symmetry properties of the systemithout through
%= wotug(Ks—ke) (C1=Co) s (5.9 flgw, alth%ugh a{‘ir?itepRe changes thgm. ’
Invariance of the field equations under —z for Re
for the two fronts withK* >0 andK* <0, respectivelyAll =0 implies that stationary perturbations wiéh=0 (TVF)
quantities appearing in Eq&.5—(5.9 depend on whether under a+ front are mirror images of those underafront.
they refer toT(m=0), L(m=1), or Rlm=—1) vortex  This implies for Re=0 the symmetry relations
fronts. These GLE results are shown in Fig. 9 by dashed
lines. (K,o,0)"=—(K,w,0)*", K:'=k*T. (5.10
They reasonably well describe the smallbehavior of
the correct front propertiedull lines in Fig. 9, which were ~ These symmetry properties of the two front typesTaper-
obtained from the correct dispersion relation of the NSE. Adurbations can be seen in Figad o
predicted by the smal: GLE approximation(5.5—(5.9) Now considerL andR perturbations. Here the invariance
one finds that for smalk the axial growth ratex* vary  Of the field equations under— —z for Re=0 implies first of
o[z, that consequently aldd — ke andv* — v, vary o Ji, all tha_t a s_paﬂally extende_d L-SPI with uniform amplitude is
and thaiw* — », can have in addition also a contributions the mirror image of a spapally e.x.tende.d R-SPI. Furthermore,
whenc,—co#0. The latter is the case fon=+1 irrespec- & L-SPI under at front with positiveK is symmetry degen-
tive of Re and fom=0 if Re+0. erate with a R-SPI under & front with negativeK. Simi-
Note that for TVF fronts withm=0,Re=0 the GLE pre- larly a R-SPI under a- typg frqnt is the mirror image of a
dicts * =0, whereas the correct dispersion in Figa)9 L—SP_I under a— front. This implies for Re=0 the symmetry
seems to show for smajk a variation ofw* < u2 that is ~ 'elations
beyond the range of applicability of the GLE. Thus, under
thg linear part ?)f a mg\F/)ing TVBIé front there should be a (K,o,0)i == (Ko0)*®,  KiE=KF, (510
nonzero phase propagation in the laboratory frame with R Pl PR ixl
phase velocityw*/k*. The analogous behavior was found (K,o,0)i"==(Ko0)Z", ki"=kI". (512
also for convection rolls in the Rayleigh-Bard systenj27]. ) o .
At the boundary between conzec?ive and ;lbsolute inStaThgyLEagpbperosjrigttigntzg g)ea;geg;j ;r;]ng%))gaer;%Eégr egi;)t.ions
bility, u=pu._,, the velocityv* and the temporal growth NN X
rate y% of the + front vanish in the laboratory frame while (5.10~(5.19 the following additional relations
v* is positive thergand given by 24 within the GLE ap- KET=k*T=kT,  *T=0*T=0, (5.13
proximation). Note that according to Fig. 3 and Tables Il and
Il w._, is zero form=0,Re=0 and very small fom=

*L_ _pxl_p*R_ _ xR
+1,Re=0. Only for large enough through flow._, be- K K=" =K% K= (5.14
comes sizeable. In the convectively unstable regimeu0 «L_ xL__ xR__ R (5.15
< e both, the+ front as well as the- front of a vortex Wy TO- s w-5 :

pulse move into the same downstream direction as the T T T T R
through flow, 0<v* <v* . In the absolutely unstable regime thatL foIIon fro[n thi faft thgtwc=ng=cRo=c1T0, ke
w> e, however, thet front moves upstream and the =K¢, vg=—vg, 70=75, Cp=—C;, C;=—C;, and
— front moves downstreany,* <0<uv* . &x=¢5 for Re=0 [26].

026318-13



A. PINTER, M. LUCKE, AND CH. HOFFMANN PHYSICAL REVIEW E67, 026318 (2003

VI. SUMMARY using a saddle-point analysis of Q) we have determined

We have determined the influence of an axial throughthe boundarie®,._,(ReR,,m) between absolute and con-

flow on the spatiotemporal growth behavior of structurallyveCtiVe instabi_lity of the basic state at WhiCh one of the frqnts
different vortex perturbations of the basic Couette-Poiseuilld’ the expanding vortex pulses reverts its propagation direc-
flow in the Taylor-Couette system with radius ratje=0.5. tion in the !aboratory fr_ame. Here we have el_u0|dated also in
To that end we have solved the linearized NSE numericallypome detail how the different saddle topologies¢Q) and
with a shooting method for vortex perturbations with Of ocLe(Q) explain some of the shortcomings of the latter.
azmuthal wave numbem=0 (TVF), m=1 (L-SPIl), and  Fit parameters for power-law expansions of the reduced
m=—1 (R-SP) in a wide range of the parameters Re, boundariese., €. ,, and ES,LE up to Ré are listed in two
andR,. Here symmetry properties allowed us to restrict our-tables.
selves to positive through flow Reynolds numbers Re. For Finally, we have determined the linearly selected front
each of the three different vortex varieties we have investibehavior of growing vortex patterns witlhn=0,=1 for R,
gated (i) axially extended vortex structures with homoge- =0 under two different types of front intensity envelopes:
neous amplitudesii) axially localized vortex pulses consist- type + shows growth in positive direction while type—
ing of a linear superposition of axially extended vortexlocates growth in negative direction. The combination of
modes with different real axial wave numbétsand (iii ) the three different dynamics of the constituent vortex modes
vortex fronts. (m=0,%£1) and of the two different spatial intensity profiles
Central to our analysis is the determination of the com-(+ ) |eads to six different fronts-e' ("2~ " DeK" (z=v*D)
plex dispersion relationg(Q) of the linearized NSE for in the laboratory frame. Their velocity*, spatial growth
vortex modes with the three differemt We have evaluated rateK*, wave numbek*, and frequency* as determined
o over the plane of complex wave numbds=k—iK for  yia a saddle-point analysis of the respective dispersion rela-

patterns(ii) and(iii) and along the redt axis for pattern(i).  tjons differ in general from each other in the presence of a
We have also determined the Ginzburg-Landau amplitudenrough flow.

equation approximationg, ¢(Q) in order to analyze its pre-
dictions for the vortex stucture@) and (iii) in comparison
with the correct NSE dispersjon relatie{Q). In each case ACKNOWLEDGMENT
symmetry relations are elucidated.
First, we have evaluated the critical bifurcation thresholds This work was supported by the Deutsche Forschungs-
Ri.(ReR,,m) for axially extended vortex structures. Then gemeinschatft.
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